Respuesta :
Answer: 0.1359
Step-by-step explanation:
mean = $400
Standard deviation = $50
Since the wages is normally distributed , the first thing is to find the z - score.
z = [tex]\frac{x-mean}{standard deviation}[/tex]
finding the z - value for 300 and 350 , we have
z = [tex]\frac{300-400}{50}[/tex]
z = [tex]\frac{-100}{50}[/tex]
2 = -2
also
z = [tex]\frac{350-400}{50}[/tex]
z = [tex]\frac{-50}{50}[/tex]
z = -1
The next thing is to check the calculated value on z - table.
From z - table :
P (z[tex]\leq[/tex] -2 ) = 0.0228
P ( z [tex]\leq -1[/tex] ) = 0.1587
combining the two
P ( -2[tex]\leq[/tex]z[tex]\leq[/tex]-1 ) = 0.1587 - 0.0228
P ( -2[tex]\leq[/tex]z[tex]\leq[/tex]-1 ) = 0.1359
Therefore , the the probability that a worker
selected at random makes between
$300 and $350 = 0.1359
Otras preguntas
