Answer:
four numbers are 1, 3, 5, 7
Step-by-step explanation:
The sum of four numbers in arithmetic progression is 16
a, a+d, a+2d, a+3d are the four arithmetic series
sum of 4 numbers are
[tex]a+a+d+a+2d+a+3d=4a+6d[/tex]
[tex]4a+6d= 16[/tex]
divide both sides by 2
[tex]2a+3d=8[/tex]
[tex]3d= 8-2a[/tex]
The square of the last number is the square of the first number plus 48.
[tex](a+3d)^2=a^2+48[/tex]
solve for a and d
[tex](a+3d)^2=a^2+48\\(a+8-2a)^2=a^2+48\\(8-a)^2=a^2+48\\a^2-16a+64=a^2+48\\-16a=48-64\\-16a=-16\\a=1[/tex]
Now find out 'd'
[tex]3d=8-2a\\3d=8-2\\3d=6\\a=2[/tex]
a, a+d, a+2d, a+3d
four numbers are 1, 3, 5, 7