Answer:
[tex]v(t)=-\frac{5}{2}\sqrt{t^3}+20\\s(t)=-\sqrt{t^5}+20t[/tex]
[tex]s(t=4)=48\text{ m}[/tex]
Explanation:
In this case acceleration is defined as:
[tex]a(t)=-k\sqrt{t}[/tex] ,
where k is a constant to be found.
To find the expressions for velocity and position as a function of time you must integrate the expression above for acceleration two times.
Initial conditions and boundary conditions are defined with the rest of the data as:
[tex]v(t=0)=20\text{ m/s}\\v(t=4)=0\text{ m/s}\\s(t=0)=0\text{ m}[/tex]
First integration is equal to:
[tex]a'(t)=v(t)=-k\int\sqrt{t}dt=-\frac{2}{3}k\sqrt{t^3}+C_1[/tex]
The boundary condition and initial condition can be used to calculate [tex]k[/tex] and [tex]C_1[/tex]:
[tex]C_1=20\\k=\frac{15}{4}[/tex]
With this expression for velocity is defined as:
[tex]v(t)=-\frac{5}{2}\sqrt{t^3}+20[/tex]
The same can be done to get to expression for position:
[tex]s(t)=-\sqrt{t^5}+20[/tex]
To get the total distance traveled you can integrate the velocity expression from time=0 sec to time=4 sec:
[tex]s_{tot}=\int_0^4(-\frac{5}{2}\sqrt{t^3}+20)dt=48\text{ m}[/tex]