Answer:
binding energy will be [tex]0.1633\times 10^{-15}J[/tex]
Explanation:
We have given wavelength of photon [tex]\lambda =121pm=121\times 10^{-12}m[/tex]
Velocity of light [tex]c=3\times 10^8m/sec[/tex]
Plank's constant [tex]h=6.6\times 10^{-34}Js[/tex]
So energy of photon [tex]E=\frac{hc}{\lambda }=\frac{6.6\times 10^{-34}\times 3\times 10^8}{121\times 10^{-12}}=1.636\times 10^{-15}J[/tex]
Mass of electron [tex]m=9.1\times 10^{-31}kg[/tex]
Velocity of electron is given [tex]v=56.9\times 10^6m/sec[/tex]
So kinetic energy of electron [tex]KE=\frac{1}{2}mv^2=\frac{1}{2}\times 9.1\times 10^{-31}\times (56.9\times 10^6)^2=1.473\times 10^{-15}J[/tex]
So binding energy = plank's energy - kinetic energy
[tex]=1.636\times 10^{-15}-1.473\times 10^{-15}=0.1633\times 10^{-15}J[/tex]
So binding energy will be [tex]0.1633\times 10^{-15}J[/tex]