Answer: The boiling point of solution is [tex]112.16^0C[/tex]
Explanation:
Elevation in boiling point:
[tex]T_b-T^o_b=i\times k_b\times \frac{w_2\times 1000}{M_2\times w_1}[/tex]
where,
[tex]T_b[/tex] = boiling point of solution = ?
[tex]T^o_b[/tex] = boiling point of toluene = [tex]110.63^oC[/tex]
[tex]k_b[/tex] = boiling point constant of toluene =[tex]3.40^oC/m[/tex]
m = molality
i = Van't Hoff factor = 1 (for non-electrolyte)
[tex]w_2[/tex] = mass of solute [tex](I_2)[/tex] = 7.94 g
[tex]w_1[/tex] = mass of solvent (toluene) = 69.2 g
[tex]M_2[/tex] = molar mass of solute [tex](I_2)[/tex]= 254g/mol
Now put all the given values in the above formula, we get:
[tex](T_b-110.63)^oC=1\times (3.40^oC/m)\times \frac{(7.94g)\times 1000}{254\times (69.2g)}[/tex]
[tex]T_b=112.16^0C[/tex]
Therefore, the boiling point (in °C) of a solution is 112.16