Respuesta :
Answer:
- t = 284 min (rounded to 3 significant figures).
Explanation:
1. Decomposition reaction:
Chemical equation:
- 2N₂O → 2N₂ + O₂
2. First order reaction:
Rate law:
[tex]r=-\frac{d[N_2O]}{dt}= k[N_2O]\\ \\ \frac{d[N_2O]}{dt}= -k[N_2O][/tex]
Integrated rate law:
[tex]\frac{d[N_2O]}{[N_2O]}=-kdt\\ \\ ln[N_2O]-ln[N_2O]_0=-kt[/tex]
3. Determine the rate constant, k
- t = 42.0 min, [N₂O] = 0.640 mol
- [N₂O]₀ = 0.900
- [tex]ln(0.640)-ln(0.900)=-k(42.0min)[/tex]
- k = 0.00812 min⁻¹
4. Time taken for the reaction to be 90.0% complete
- [N₂O] = 0.100[N₂O]=0.100×0.900 mol = 0.0900 mol
- ln(0.0900) - ln(0.900) = - 0.00812 min⁻¹ × t
- t = (2.30 / 0.00812) min ≈ 283.6 min ≈ 284 min (rounded to 3 significant figures).
The time taken to have 90% of the reaction complete is 16429 s or 274 mins.
Using the relation;
N(t) = Noe^-kt
N(t) = amount at time t
No = amount initially present
k = decay constant
t = time taken
Now;
0.640 = 0.900e^-2520k
0.640/ 0.900 = e^-2520k
ln(0.640/ 0.900) = ln(e^-2520k)
ln(0.71) = -2520k
k = ln(0.71)/-2520
k = 1.4 * 10^-4 s-1
Hence at N(t) we have No - 0.9No = 0.1No
0.1No = Noe^-1.4 * 10^-4t
0.1No/No = e^-1.4 * 10^-4t
0.1 = e^-1.4 * 10^-4t
ln(0.1) = lne^-1.4 * 10^-4t
-2.3 = -1.4 * 10^-4t
t = -2.3/-1.4 * 10^-4
t = 16429 s or 274 mins
Learn more about first order reaction.https://brainly.com/question/21288807
