Answer:
Tension must a rope be stretched is 36.8828 N
Explanation:
Wave speed in term of wavelength:
[tex]v=f. \lambda[/tex]
Where:
f is the frequency
[tex]\lambda[/tex] is the wavelength
Now:
[tex]v=36*0.790\\v=28.44 m/s[/tex]
Wave speed in term of tension force and mass per unit length
[tex]v=\sqrt{\frac{F}{Mass\ per\ unit\ length}}[/tex] Eq (1)
Where:
F is the tension force
[tex]Mass\ per\ unit\ length=\frac{0.105}{2.30} \\Mass\ per\ unit\ length=0.0456 Kg/m\\[/tex]
Since [tex]v[/tex] is calculated above.On rearranging Eq (1) we will get:
[tex]F=v^2 *Mass\ per\ unit\ length\\F=(28.44)^2*0.0456\\F=36.8828 N[/tex]
Tension must a rope be stretched is 36.8828 N