Answer with Step-by-step explanation:
a.[tex]x=b^p[/tex]
[tex]y=b^q[/tex]
Taking both sides log
[tex]log x=plog b[/tex]
Using identity:[tex]logx^y=ylogx[/tex]
[tex]p=\frac{logx}{log b}=log_b x[/tex]
Using identity:[tex]log_x y=\frac{log y}{log x}[/tex]
[tex]log y=qlog b[/tex]
[tex]q=\frac{log y}{log b}=log_b y[/tex]
b.[tex]xy=b^pb^q[/tex]
We know that
[tex]x^a\cdot x^b=x^{a+b}[/tex]
Using identity
[tex]xy=b^{p+q}[/tex]
c.[tex]log_b(xy)=log_b(b^{p+q})[/tex]
[tex]log_b(xy)=(p+q)log_b b[/tex]
Substitute the values then we get
[tex]log_b(xy)=(log_b x+log_b y)[/tex]
By using [tex]log_b b=1[/tex]
Hence, [tex]log_b(xy)=log_b x+log_b y[/tex]