Answer:
(a). The power delivered to the element is 187.68 mW
(b). The energy delivered to the element is 57.52 mJ.
Explanation:
Given that,
Charge [tex]q=5\sin4\pi t\ mC[/tex]
Voltage [tex]v=3\cos4\pi t\ V[/tex]
Time t = 0.3 sec
We need to calculate the current
Using formula of current
[tex]i(t)=\dfrac{dq}{dt}[/tex]
Put the value of charge
[tex]i(t)=\dfrac{d}{dt}(5\sin4\pi t)[/tex]
[tex]i(t)=5\times4\pi\cos4\pi t[/tex]
[tex]i(t)=20\pi\cos4\pi t[/tex]
(a).We need to calculate the power delivered to the element
Using formula of power
[tex]p(t)=v(t)\times i(t)[/tex]
Put the value into the formula
[tex]p(t)=3\cos4\pi t\times20\pi\cos4\pi t[/tex]
[tex]p(t)=60\pi\times10^{-3}\cos^2(4\pi t)[/tex]
[tex]p(t)=60\pi\times10^{-3}(\dfrac{1+\cos8\pi t}{2})[/tex]
Put the value of t
[tex]p(t)=60\pi\times10^{-3}(\dfrac{1+\cos8\pi\times0.3}{2})[/tex]
[tex]p(t)=30\pi\times10^{-3}(1+\cos8\pi \times0.3)[/tex]
[tex]p(t)=187.68\ mW[/tex]
(b). We need to calculate the energy delivered to the element between 0 and 0.6 s
Using formula of energy
[tex]E(t)=\int_{0}^{t}{p(t)dt}[/tex]
Put the value into the formula
[tex]E(t)=\int_{0}^{0.6}{30\pi\times10^{-3}(1+\cos8\pi \times t)}[/tex]
[tex]E(t)=30\pi\times10^{-3}\int_{0}^{0.6}{1+\cos8\pi \times t}[/tex]
[tex]E(t)=30\pi\times10^{-3}(t+\dfrac{\sin8\pi t}{8\pi})_{0}^{0.6}[/tex]
[tex]E(t)=30\pi\times10^{-3}(0.6+\dfrac{\sin8\pi\times0.6}{8\pi}-0-0)[/tex]
[tex]E(t)=57.52\ mJ[/tex]
Hence, (a). The power delivered to the element is 187.68 mW
(b). The energy delivered to the element is 57.52 mJ.