Answer:
[tex]x^{2} +14x=0[/tex]
Step-by-step explanation:
Given:
Given root is
[tex]x=-14,\ 0[/tex]
Now we need to find the quadratic equation for given roots.
Solution:
The given roots are -14 and 0.
So, the sum of the roots.
[tex]\alpha +\beta = -14 + 0[/tex]
[tex]\alpha +\beta = -14[/tex]
Product of the given roots
[tex]\alpha\times \beta = -14\times 0[/tex]
[tex]\alpha\times \beta = 0[/tex]
Therefore, the required quadratic equation is.
[tex]x^{2} -(\alpha +\beta )x+\alpha\times \beta=0[/tex] -------------------(1)
Now we substitute [tex](\alpha +\beta )[/tex] and [tex](\alpha\times \beta)[/tex] in equation 1.
[tex]x^{2} -(-14)x+0=0[/tex]
[tex]x^{2} +14x=0[/tex]
Therefore, the quadratic equation for the given root is. [tex]x^{2} +14x=0[/tex]