Respuesta :
Answer:
51.019 μT
Explanation:
[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi \times 10^{-7}\ H/m[/tex]
i = Current in wire = 0.203 A
N = Number of turns = 200
d = Diameter = 1 m
Magnetic field is given by
[tex]B=\dfrac{N\mu_0i}{d}\\\Rightarrow B=\dfrac{200\times 4\pi \times 10^{-7}\times 0.203}{1}\\\Rightarrow B=0.000051019\ T[/tex]
The strength of the magnetic field at this location would be 51.019 μT
The magnetic field at the given point is 51.019 μT.
Magnetic field:
It is given that the current in the coil is I = 0.203A
the diameter of the loop carrying the current is d = 2r = 1m
and the number of turns is N = 200.
The magnetic field to a current-carrying loop having N number of turns and carrying a current I with the radius of the loop being r is given by:
[tex]B=\frac{\mu_oNI}{2r} \\\\B=\frac{4\pi\times10^{-7}\times200\times0.203}{1}\\\\B=51.019\;\mu T[/tex]
Learn more about current-carrying loop:
https://brainly.com/question/15743562?referrer=searchResults