A certain substance has a heat of vaporization of 47.70 kJ/mol. At what kelvin temperature will the vapor pressure be 3.50 times higher than it was at 293k?=______K

Respuesta :

Answer:

[tex]T_2 = 313\ K[/tex]

Explanation:

he expression for Clausius-Clapeyron Equation is shown below as:

[tex]\ln P = \dfrac{-\Delta{H_{vap}}}{RT} + c [/tex]

Where,  

P is the vapor pressure

ΔHvap  is the Enthalpy of Vaporization

R is the gas constant (8.314×10⁻³ kJ /mol K)

c is the constant.

For two situations and phases, the equation becomes:

[tex]\ln \left( \dfrac{P_1}{P_2} \right) = \dfrac{\Delta H_{vap}}{R} \left( \dfrac{1}{T_2}- \dfrac{1}{T_1} \right)[/tex]

Given:

[tex]P_2[/tex] = 3.50 [tex]P_1[/tex]

[tex]T_1[/tex] = 293 K

[tex]\Delta \:H_{vap}=47.70\ kJ/mol[/tex]

So,  

[tex]\ln \left( \dfrac{P_1}{3.50\times P_1} \right) = \dfrac{47.70}{8.314\times 10^{-3}} \left( \dfrac{1}{T_2}- \dfrac{1}{293} \right)[/tex]

[tex]\ln \left( \dfrac{1}{3.50} \right) = \dfrac{47.70}{8.314\times 10^{-3}} \left( \dfrac{1}{T_2}- \dfrac{1}{293} \right)[/tex]

[tex]-\ln \left(3.5\right)=\frac{47700}{8.314}\left(\frac{1}{T_2}-\frac{1}{293}\right)[/tex]

[tex]-2436.002\ln \left(3.5\right)T_2=13976100-47700T_2[/tex]

[tex]T_2 = 313\ K[/tex]

RELAXING NOICE
Relax