Answer:
[tex]T_2 = 313\ K[/tex]
Explanation:
he expression for Clausius-Clapeyron Equation is shown below as:
[tex]\ln P = \dfrac{-\Delta{H_{vap}}}{RT} + c [/tex]
Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
For two situations and phases, the equation becomes:
[tex]\ln \left( \dfrac{P_1}{P_2} \right) = \dfrac{\Delta H_{vap}}{R} \left( \dfrac{1}{T_2}- \dfrac{1}{T_1} \right)[/tex]
Given:
[tex]P_2[/tex] = 3.50 [tex]P_1[/tex]
[tex]T_1[/tex] = 293 K
[tex]\Delta \:H_{vap}=47.70\ kJ/mol[/tex]
So,
[tex]\ln \left( \dfrac{P_1}{3.50\times P_1} \right) = \dfrac{47.70}{8.314\times 10^{-3}} \left( \dfrac{1}{T_2}- \dfrac{1}{293} \right)[/tex]
[tex]\ln \left( \dfrac{1}{3.50} \right) = \dfrac{47.70}{8.314\times 10^{-3}} \left( \dfrac{1}{T_2}- \dfrac{1}{293} \right)[/tex]
[tex]-\ln \left(3.5\right)=\frac{47700}{8.314}\left(\frac{1}{T_2}-\frac{1}{293}\right)[/tex]
[tex]-2436.002\ln \left(3.5\right)T_2=13976100-47700T_2[/tex]
[tex]T_2 = 313\ K[/tex]