Answer:
current price = $1191.79
Explanation:
given data
time t = 15 year
annual coupon bonds rate = = 7.5 %
par value = $1000
interest rate = 5.5%
maturity time = 14 year
to find out
current price of the bonds
solution
we get here first annual coupon rate = 7.5% of 1000
annual coupon rate C = $75
so now we get current price of bond
current price of the bonds = [tex]\frac{C}{(1+r)} +\frac{C}{(1+r)^2} +\frac{C}{(1+r)^3} +\frac{C}{(1+r)^4} ..........\frac{C}{(1+r)^{13}} + \frac{C+par\ value}{(1+r)^{14}}[/tex] .................1
put here value
current price = [tex]\frac{75}{(1+r)} +\frac{75}{(1+r)^2} +\frac{75}{(1+r)^3} +\frac{75}{(1+r)^4} ..........\frac{75}{(1+r)^{13}} + \frac{75+1000}{(1+r)^{14}}[/tex]
current price = [tex]\frac{75}{(1+r)} \frac{1-(\frac{1}{1+r})^{14} }{r} (1+r) + \frac{1000}{(1+r)^{14}}[/tex]
solve it we get
current price = $1191.79