The solution is [tex]x = 2 \text{ and } y = \frac{1}{2}[/tex]
Solution:
Let us assume,
[tex]a = \frac{1}{x}\\\\b = \frac{1}{y}[/tex]
Given system of equations are:
[tex]\frac{2}{x} - \frac{3}{y} = -5[/tex]
[tex]\frac{4}{x} + \frac{6}{y} = 14[/tex]
Rewrite the equation using "a" and "b"
2a - 3b = -5 ------------ eqn 1
4a + 6b = 14 -------------- eqn 2
Let us solve eqn 1 and eqn 2
Multiply eqn 1 by 2
2(2a - 3b = -5)
4a - 6b = -10 ------------- eqn 3
Add eqn 2 and eqn 3
4a + 6b = 14
4a - 6b = -10
( - ) --------------------
8a = 4
[tex]a = \frac{4}{8}\\\\a = \frac{1}{2}[/tex]
Substitute a = 1/2 in eqn 1
[tex]2(\frac{1}{2}) -3b = -5\\\\1 - 3b = -5\\\\3b = 6\\\\b = 2[/tex]
Now let us go back to our assumed values
Substitute a = 1/2 in assumed values
[tex]a = \frac{1}{x}\\\\\frac{1}{2} = \frac{1}{x}\\\\x = 2[/tex]
Substitute b = 2 in assumed value
[tex]b = \frac{1}{y}\\\\2 = \frac{1}{y}\\\\y = \frac{1}{2}[/tex]
Thus the solution is [tex]x = 2 \text{ and } y = \frac{1}{2}[/tex]