What is the quotient?

StartFraction 2 y squared minus 6 y minus 20 Over 4 y + 12 EndFraction divided by StartFraction y squared + 5 y + 6 Over 3 y squared + 18 y + 27 EndFraction

Respuesta :

The quotient is [tex]\frac{3(y-5)}{2}[/tex]

Explanation:

The expression is [tex]\frac{2 y^{2}-6 y-20}{4 y+12} \div \frac{y^{2}+5 y+6}{3 y^{2}+18 y+27}[/tex]

Now, reciprocal the term [tex]\frac{y^{2}+5 y+6}{3 y^{2}+18 y+27}[/tex] and convert ÷ to ×

[tex]\frac{2 y^{2}-6 y-20}{4 y+12} \times \frac{3 y^{2}+18 y+27}{y^{2}+5 y+6}[/tex]

Taking the common terms out, we get,

[tex]\frac{2\left(y^{2}-3 y-10\right)}{4(y+3)} \times \frac{3\left(y^{2}+6 y+9\right)}{y^{2}+5 y+6}[/tex]

Factorizing each numerator and denominator, we get,

[tex]\frac{2(y-5)(y+2)}{4(y+3)} \times \frac{3(y+3)(y+3)}{(y+3)(y+2)}[/tex]

Multiplying the terms, we have,

[tex]\frac{6(y-5)(y+2)(y+3)^{2}}{4(y+3)^{2}(y+2)}[/tex]

Cancelling the common factors, we get,

[tex]\frac{3(y-5)}{2}[/tex]

Thus, the quotient is [tex]\frac{3(y-5)}{2}[/tex]

Answer:

B

Step-by-step explanation:

On edge 2021

RELAXING NOICE
Relax