Consider a thin suspended hotplate that measures 0.25 m × 0.25 m. The isothermal plate has a mass of 3.75 kg, a specific heat of 2770 J/kg·K, and a temperature of 250°C. The ambient air temperature is 25°C and the surroundings temperature is 25°C. If the convection coefficient is 6.4 W/m2·K and the emissivity of the plate is 0.42, determine the time rate of change of the plate temperature, , when the plate temperature is 250°C. Evaluate the magnitude of the heat losses by convection and by radiation.

Respuesta :

Answer:

Heat losses by convection, Qconv = 90W

Heat losses by radiation, Qrad = 5.814W

Explanation:

Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:

1. Radiation

2. Conduction

3. Convection

Convection is defined as the transfer of heat through the actual movement of the molecules.

Qconv = hA(Temp.final - Temp.surr)

Where h = 6.4KW/m2K

A, area of a square = L2

= (0.25)2

= 0.0625m2

Temp.final = 250°C

Temp.surr = 25°C

Q = 64 * 0.0625 * (250 - 25)

= 90W

Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.

Qrad = E*S*(Temp.final4 - Temp.surr4)

Where E = emissivity of the surface

S = boltzmann constant

= 5.6703 x 10-8 W/m2K4

Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)

= 5.814 W

RELAXING NOICE
Relax