Respuesta :

Answer:

164 g/mol

Explanation:

According to Graham's law, the rate of effusion of a gas (r) is inversely proportional to the square root of its molar mass (M).

rH₂/rX = √[M(X)/ M(H₂)]

(rH₂/rX)² = M(X)/ M(H₂)

M(X) = (rH₂/rX)² × M(H₂)

M(X) = (9)² × 2.02 g/mol

M(X) = 164 g/mol

The molar mass of the unknown gas is 164 g/mol.

The molar mass of the unknown gas is 64 g/mol.

According to Graham's law:

The rate of effusion of a gas (r) is inversely proportional to the square root of its molar mass (M).

It is given by:

[tex]rH_2/rX = \sqrt{[M(X)/ M(H_2)]} \\\\(rH_2/rX)^2 = M(X)/ M(H_2)\\\\M(X) = (rH_2/rX)^2 * M(H₂)\\\\M(X) = (9)^2 * 2.02 g/mol\\\\M(X) = 164 g/mol[/tex]

Thus, the molar mass of the unknown gas is 164 g/mol.

Find more information about Rate of effusion here:

brainly.com/question/6926837

RELAXING NOICE
Relax