Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction: 2NO2 → 2NO + O2 In a particular experiment at 300 °C, [NO 2 ] drops from 0.0100 to 0.00650 M in 100 s. The rate of disappearance of NO2 for this period is __________ M/s.

Respuesta :

Answer: The rate of disappearance of [tex]NO_2[/tex] is [tex]3.5\times 10^{-5}M/s[/tex]

Explanation:

The given chemical reaction is:

[tex]2NO_2\rightarrow 2NO+O_2[/tex]

The rate of the reaction for disappearance of [tex]NO_2[/tex] is given as:

[tex]\text{Rate of disappearance of }NO_2=-\frac{\Delta [NO_2]}{\Delta t}[/tex]

Or,

[tex]\text{Rate of disappearance of }NO_2=-\frac{C_2-C_1}{t_2-t_1}[/tex]

where,

[tex]C_2[/tex] = final concentration of [tex]NO_2[/tex] = 0.00650 M

[tex]C_1[/tex] = initial concentration of [tex]NO_2[/tex] = 0.0100 M

[tex]t_2[/tex] = final time = 100 minutes

[tex]t_1[/tex] = initial time = 0 minutes

Putting values in above equation, we get:

[tex]\text{Rate of disappearance of }NO_2=-\frac{0.00650-0.0100}{100-0}\\\\\text{Rate of disappearance of }NO_2=3.5\times 10^{-5}M/s[/tex]

Hence, the rate of disappearance of [tex]NO_2[/tex] is [tex]3.5\times 10^{-5}M/s[/tex]

Answer:

  • The rate of  appearance of [tex]O_2[/tex] for this period = [tex]1.75 * 10^{-5} M / s[/tex]

Explanation:

[tex]rate = - \frac{\frac{1}{2} \delta [NO2]}{\delta t}\\\\rate = \frac{\frac{1}{2} \delta [NO]}{\delta t} \\\\rate = \frac{\delta [O2]}{\delta t}[/tex]

From,

[tex][ NO_2]_0[/tex] = 0.01M, t1 = 0s

[tex][NO_2][/tex] = 0.00650M, t2 = 100s

Therefore,

the rate of disappearance of [tex]NO_2[/tex]= [tex]- \frac{\frac{1}{2} ( 0.00650 - 0.01 )}{100}[/tex]

[tex]= 1.75 * 10^{-5} M / s[/tex]

But from the above relation rate of disappearance of [tex]NO_2[/tex] =  rate of appearance of [tex]O_2[/tex].

Therefore,

rate of appearance of [tex]O_2[/tex] = [tex]1.75 * 10^{-5} M / s[/tex]

For more information on rate of disappearance, visit

https://brainly.com/subject/chemistry

ACCESS MORE
EDU ACCESS