Respuesta :
Answer: The rate of disappearance of [tex]NO_2[/tex] is [tex]3.5\times 10^{-5}M/s[/tex]
Explanation:
The given chemical reaction is:
[tex]2NO_2\rightarrow 2NO+O_2[/tex]
The rate of the reaction for disappearance of [tex]NO_2[/tex] is given as:
[tex]\text{Rate of disappearance of }NO_2=-\frac{\Delta [NO_2]}{\Delta t}[/tex]
Or,
[tex]\text{Rate of disappearance of }NO_2=-\frac{C_2-C_1}{t_2-t_1}[/tex]
where,
[tex]C_2[/tex] = final concentration of [tex]NO_2[/tex] = 0.00650 M
[tex]C_1[/tex] = initial concentration of [tex]NO_2[/tex] = 0.0100 M
[tex]t_2[/tex] = final time = 100 minutes
[tex]t_1[/tex] = initial time = 0 minutes
Putting values in above equation, we get:
[tex]\text{Rate of disappearance of }NO_2=-\frac{0.00650-0.0100}{100-0}\\\\\text{Rate of disappearance of }NO_2=3.5\times 10^{-5}M/s[/tex]
Hence, the rate of disappearance of [tex]NO_2[/tex] is [tex]3.5\times 10^{-5}M/s[/tex]
Answer:
- The rate of appearance of [tex]O_2[/tex] for this period = [tex]1.75 * 10^{-5} M / s[/tex]
Explanation:
[tex]rate = - \frac{\frac{1}{2} \delta [NO2]}{\delta t}\\\\rate = \frac{\frac{1}{2} \delta [NO]}{\delta t} \\\\rate = \frac{\delta [O2]}{\delta t}[/tex]
From,
[tex][ NO_2]_0[/tex] = 0.01M, t1 = 0s
[tex][NO_2][/tex] = 0.00650M, t2 = 100s
Therefore,
the rate of disappearance of [tex]NO_2[/tex]= [tex]- \frac{\frac{1}{2} ( 0.00650 - 0.01 )}{100}[/tex]
[tex]= 1.75 * 10^{-5} M / s[/tex]
But from the above relation rate of disappearance of [tex]NO_2[/tex] = rate of appearance of [tex]O_2[/tex].
Therefore,
rate of appearance of [tex]O_2[/tex] = [tex]1.75 * 10^{-5} M / s[/tex]
For more information on rate of disappearance, visit
https://brainly.com/subject/chemistry