Answer : The molar concentration is, [tex]6.35\times 10^{-18}mol/L[/tex]
Explanation :
First we have to calculate the moles of protein.
[tex]\text{Moles of protein}=\frac{\text{Number of molecules of protein}}{\text{Avogadro's number}}[/tex]
Number of molecules of protein = 2 molecules
Avogadro's number = [tex]6.022\times 10^{23}molecules/mol[/tex]
[tex]\text{Moles of protein}=\frac{2\text{ molecules}}{6.022\times 10^{23}molecules/mol}=3.32\times 10^{-24}mol[/tex]
Now we have to calculate the radius.
Radius = [tex]\frac{Diameter}{2}=\frac{1mm}{2}=0.5mm=5.0\times 10^{-4}m[/tex]
Conversion used : (1 mm = 0.001 m)
Now we have to calculate the volume.
[tex]V=\frac{4}{3}\pi r^3[/tex]
[tex]V=\frac{4}{3}\times 3.14\times (5.0\times 10^{-4}m)^3[/tex]
[tex]V=5.23\times 10^{-10}m^3=5.23\times 10^{-7}L[/tex]
Conversion used : (1 m³ = 1000 L)
Now we have to calculate the molar concentration.
[tex]Concentration=\frac{\text{Moles of protein}}{\text{Volume}}[/tex]
[tex]Concentration=\frac{3.32\times 10^{-24}mol}{5.23\times 10^{-7}L}[/tex]
[tex]Concentration=6.35\times 10^{-18}mol/L[/tex]
Thus, the molar concentration is, [tex]6.35\times 10^{-18}mol/L[/tex]