Respuesta :
Answer:
After [tex]t=4.77\tau[/tex] voltage across the capacitor will be 0.85 % of the initial voltage across the capacitor
Explanation:
Let initially voltage across capacitor is [tex]v_0[/tex]
After discharging the voltage across the capacitor is .85% of its initial voltage
So final voltage [tex]v=0.0085v_0[/tex]
We know that voltage across capacitor is given by [tex]v=v_0e^{\frac{-t}{\tau }}[/tex]
So [tex]0.85v_0=v_0e^{\frac{-t}{\tau }}[/tex]
[tex]e^{\frac{-t}{\tau }}=0.0085[/tex]
[tex]{\frac{-t}{\tau }}=ln0.0085[/tex]
[tex]-t=-4.77\tau[/tex]
[tex]t=4.77\tau[/tex]
So after [tex]t=4.77\tau[/tex] voltage across the capacitor will be 0.85 % of the initial voltage across the capacitor
Time constant of capacitive circuit is equal to the ratio of resistance and capacitance
The number of time constants the voltage across a discharging cap has decayed to 0.85% of its' initial value is;
4.768τ
In RC time constants, the formula for voltage across capacitor when discharging is given by;
v = v₀e^(-t/τ)
where;
v₀ = initial voltage on the capacitor
v = the voltage after time t
t = time in seconds
τ = time constant
We are told that the capacitor decayed to 0.85% of its' initial vale. Thus;
v = 0.0085v₀
Thus;
0.0085v₀ = v₀e^(-t/τ)
v₀ will cancel out to give;
0.0085 = e^(-t/τ)
In 0.0085 = -t/τ
-4.768 = -t/τ
Since we want to find number of time constants, then let us make t the subject to get;
t = 4.768τ
Read more at; https://brainly.com/question/15905489
