Answer:
The [tex]K_c[/tex] for the reaction [tex]B(g) = \frac{1}{2}A[/tex] will be 4.69.
Explanation:
The given equation is A(B) = 2B(g)
to evaluate equilibrium constant for [tex]B(g) = \frac{1}{2}A[/tex]
[tex]K_c=[B]^2[A][/tex]
= 0.045
The reverse will be [tex]2B\leftrightharpoons A[/tex]
Then, [tex]K_c = \frac{[A]}{[B]^2}[/tex]
= [tex]\frac{1}{0.045}[/tex]
= [tex]22m^{-1}[/tex]
The equilibrium constant for [tex]B(g) = \frac{1}{2}A[/tex] will be
[tex]K_c = \sqrt{K_c}[/tex]
[tex]=\sqrt{22}[/tex]
= 4.69
Therefore, [tex]K_c[/tex] for the reaction [tex]B(g) = \frac{1}{2}A[/tex] will be 4.69.