Answer:
[tex]\large \boxed{\text{approximately 435.7 km/min}}[/tex]
Step-by-step explanation:
1. Angular speed
The angular speed ω is the angle θ swept out by the satellite in a given time t.
[tex]\omega = \dfrac{\theta}{t} = \dfrac{2\pi}{\text{110 min}}[/tex]
2. Linear speed
The formula for the linear speed v is
v = rω, where
r = the distance from the centre of the Earth = 6378 km + 1250 km = 7628 km
[tex]\begin{array}{rcl}v & = & r\omega\\& = & \text{7268 km} \times \dfrac{2\pi}{\text{110 min}}\\\\& \approx & \textbf{435.7 km/min}\\\end{array}\\\text{The linear speed of the satellite is $\large \boxed{\textbf{approximately 435.7 km/min}}$}[/tex]