Answer:
[tex]\displaystyle y=- \frac{1}{2}x-3[/tex]
(first option)
Step-by-step explanation:
Linear Functions
They can be defined by knowing two points on them or a point and the slope of the line. The portion "a" of the piecewise function must have these conditions, only by looking at the graph
* It must be decreasing, the slope must be negative
* It must be defined for x<-2, because for x>-2, the function is defined by another piece.
* It must pass through the point (-2,-2)
Options 2 and 4 are immediately discarded, since x>2
Testing it (-2,-2) belongs to
[tex]\displaystyle y=- \frac{1}{2}x-3[/tex]
[tex]\displaystyle y=- \frac{1}{2}(-2)-3=1-3=-2[/tex]
The point (-2,-2) belongs to this function, so it's the correct choice. Let's verify the last function
[tex]\displaystyle y=- \frac{1}{2}x-6[/tex]
[tex]\displaystyle y=- \frac{1}{2}(-2)-6=-5[/tex]
This is not the point we are testing, so the portion of the graph labeled "a" is
[tex]\boxed{\displaystyle y=- \frac{1}{2}x-3}[/tex]
(First option)