Answer:
[tex]10\angle30+10\angle30= 20\angle30[/tex]
Step-by-step explanation:
any polar coordinate expression can be broken into component form (or the Cartesian coordinate form) like this:
[tex]r\angle\theta = \begin{bmatrix}r\cos{\theta}\\r\sin{\theta}\end{bmatrix}[/tex]
so,
[tex]10\angle30 = \begin{bmatrix}10\cos{30}\\10\sin{30}\end{bmatrix}[/tex]
this simplifies to:
[tex]10\angle30 = \begin{bmatrix}10(\frac{\sqrt{3}}{2})\\10(\frac{1}{2})\end{bmatrix}[/tex]
[tex]10\angle30 = \begin{bmatrix}5\sqrt{3}\\5\end{bmatrix}[/tex]
the other polar coordinate is the same, hence. we'll just move on to sum them up.
[tex]10\angle30+10\angle30[/tex]
[tex]\begin{bmatrix}5\sqrt{3}\\5\end{bmatrix}+\begin{bmatrix}5\sqrt{3}\\5\end{bmatrix}[/tex]
[tex]\begin{bmatrix}10\sqrt{3}\\10\end{bmatrix}[/tex]
r:
[tex]r = \sqrt{(10\sqrt{3})^2+(10)^2}[/tex]
[tex]r = 20[/tex]
angle:
[tex]\theta = \arctan{\dfrac{y}{x}}[/tex]
in our case that's
[tex]\theta = \arctan{\dfrac{1}{\sqrt{3}}}[/tex]
[tex]\theta = 30[/tex]
so the answer is:
[tex]r\angle\theta = 20\angle30[/tex]
A shorter method is: to just keep in mind that the 'r' adds directly and the 'angle' doesn't.