Respuesta :

Answer:

[tex]10\angle30+10\angle30= 20\angle30[/tex]

Step-by-step explanation:

any polar coordinate expression can be broken into component form (or the Cartesian coordinate form) like this:

[tex]r\angle\theta = \begin{bmatrix}r\cos{\theta}\\r\sin{\theta}\end{bmatrix}[/tex]

so,

[tex]10\angle30 = \begin{bmatrix}10\cos{30}\\10\sin{30}\end{bmatrix}[/tex]

this simplifies to:

[tex]10\angle30 = \begin{bmatrix}10(\frac{\sqrt{3}}{2})\\10(\frac{1}{2})\end{bmatrix}[/tex]

[tex]10\angle30 = \begin{bmatrix}5\sqrt{3}\\5\end{bmatrix}[/tex]

the other polar coordinate is the same, hence. we'll just move on to sum them up.

[tex]10\angle30+10\angle30[/tex]

[tex]\begin{bmatrix}5\sqrt{3}\\5\end{bmatrix}+\begin{bmatrix}5\sqrt{3}\\5\end{bmatrix}[/tex]

[tex]\begin{bmatrix}10\sqrt{3}\\10\end{bmatrix}[/tex]

r:

[tex]r = \sqrt{(10\sqrt{3})^2+(10)^2}[/tex]

[tex]r = 20[/tex]

angle:

[tex]\theta = \arctan{\dfrac{y}{x}}[/tex]

in our case that's

[tex]\theta = \arctan{\dfrac{1}{\sqrt{3}}}[/tex]

[tex]\theta = 30[/tex]

so the answer is:

[tex]r\angle\theta = 20\angle30[/tex]

A shorter method is: to just keep in mind that the 'r' adds directly and the 'angle' doesn't.

ACCESS MORE