Two wires are parallel, and one is directly above the other. Each has a length of 44.3 m and a mass per unit length of 0.0292 kg/m. However, the tension in wire A is 33.0 × 102 N, while the tension in wire B is 3.76 × 102 N. Transverse wave pulses are generated simultaneously, one at the left end of wire A and one at the right end of wire B. The pulses travel toward each other. How much time does it take until the pulses pass each other?

Respuesta :

Answer:

0.09852 seconds

Explanation:

[tex]\mu[/tex] = Linear density = 0.0292 kg/m

[tex]T_A[/tex] = Tesnsion in string A = [tex]33\times 10^2\ N[/tex]

[tex]T_B[/tex] = Tesnsion in string B = [tex]3.76\times 10^2\ N[/tex]

t = Time taken till the pulses pass each other

Velocity of wave in a string is given by

[tex]v_A=\sqrt{\dfrac{T_A}{\mu}}\\\Rightarrow v_A=\sqrt{\dfrac{33\times 10^2}{0.0292}}[/tex]

[tex]v_B=\sqrt{\dfrac{T_2}{\mu}}\\\Rightarrow v_B=\sqrt{\dfrac{3.76\times 10^2}{0.0292}}[/tex]

[tex]Distance=Speed\times Time[/tex]

[tex]L=(v_A+v_B)t\\\Rightarrow t=\dfrac{L}{v_A+v_B}\\\Rightarrow t=\dfrac{44.3}{\sqrt{\dfrac{33\times 10^2}{0.0292}}+\sqrt{\dfrac{3.76\times 10^2}{0.0292}}}\\\Rightarrow t=0.09852\ s[/tex]

The time taken is 0.09852 seconds

Answer:

[tex]t=0.0985\ s[/tex]

Explanation:

Given:

  • length of each wire, [tex]l_a=l_b=44.3\ m[/tex]
  • linear mass density of each wire, [tex]\mu_a=\mu_b=0.0292\ kg.m^{-1}[/tex]
  • tension in wire A, [tex]T_a=3300\ N[/tex]
  • tension in wire B, [tex]T_a=376\ N[/tex]

Now, the velocity of the wave pulse in the stretched spring is given as:

FOR A:

[tex]v_a=\sqrt{\frac{T_a}{\mu_a} }[/tex]

[tex]v_a=\sqrt{\frac{3300}{0.0292} }[/tex]

[tex]v_a=336.175\ m.s^{-1}[/tex]

FOR B:

[tex]v_b=\sqrt{\frac{T_b}{\mu_b} }[/tex]

[tex]v_b=\sqrt{\frac{376}{0.0292} }[/tex]

[tex]v_b=113.476\ m.s^{-1}[/tex]

Let the distance at which the wave of A meets the wave of B be x from left then the distance from B is (44.3-x) meters.

Now the time taken is constant:

[tex]t=\frac{x}{v_a} =\frac{x-44.3}{v_b}[/tex]

[tex]\frac{x}{336.175} =\frac{x-44.3}{113.476}[/tex]

[tex]x=33.12\ m[/tex] is the distance travelled by pulse in wire A in when the pulse in the wire B meets

Now the time taken to travel this distance by pulse in wire A:

[tex]t=\frac{x}{v_a}[/tex]

[tex]t=\frac{33.12}{336.175}[/tex]

[tex]t=0.0985\ s[/tex] is the time taken by the two waves to pass each other.

ACCESS MORE