Respuesta :
Answer:
0.09852 seconds
Explanation:
[tex]\mu[/tex] = Linear density = 0.0292 kg/m
[tex]T_A[/tex] = Tesnsion in string A = [tex]33\times 10^2\ N[/tex]
[tex]T_B[/tex] = Tesnsion in string B = [tex]3.76\times 10^2\ N[/tex]
t = Time taken till the pulses pass each other
Velocity of wave in a string is given by
[tex]v_A=\sqrt{\dfrac{T_A}{\mu}}\\\Rightarrow v_A=\sqrt{\dfrac{33\times 10^2}{0.0292}}[/tex]
[tex]v_B=\sqrt{\dfrac{T_2}{\mu}}\\\Rightarrow v_B=\sqrt{\dfrac{3.76\times 10^2}{0.0292}}[/tex]
[tex]Distance=Speed\times Time[/tex]
[tex]L=(v_A+v_B)t\\\Rightarrow t=\dfrac{L}{v_A+v_B}\\\Rightarrow t=\dfrac{44.3}{\sqrt{\dfrac{33\times 10^2}{0.0292}}+\sqrt{\dfrac{3.76\times 10^2}{0.0292}}}\\\Rightarrow t=0.09852\ s[/tex]
The time taken is 0.09852 seconds
Answer:
[tex]t=0.0985\ s[/tex]
Explanation:
Given:
- length of each wire, [tex]l_a=l_b=44.3\ m[/tex]
- linear mass density of each wire, [tex]\mu_a=\mu_b=0.0292\ kg.m^{-1}[/tex]
- tension in wire A, [tex]T_a=3300\ N[/tex]
- tension in wire B, [tex]T_a=376\ N[/tex]
Now, the velocity of the wave pulse in the stretched spring is given as:
FOR A:
[tex]v_a=\sqrt{\frac{T_a}{\mu_a} }[/tex]
[tex]v_a=\sqrt{\frac{3300}{0.0292} }[/tex]
[tex]v_a=336.175\ m.s^{-1}[/tex]
FOR B:
[tex]v_b=\sqrt{\frac{T_b}{\mu_b} }[/tex]
[tex]v_b=\sqrt{\frac{376}{0.0292} }[/tex]
[tex]v_b=113.476\ m.s^{-1}[/tex]
Let the distance at which the wave of A meets the wave of B be x from left then the distance from B is (44.3-x) meters.
Now the time taken is constant:
[tex]t=\frac{x}{v_a} =\frac{x-44.3}{v_b}[/tex]
[tex]\frac{x}{336.175} =\frac{x-44.3}{113.476}[/tex]
[tex]x=33.12\ m[/tex] is the distance travelled by pulse in wire A in when the pulse in the wire B meets
Now the time taken to travel this distance by pulse in wire A:
[tex]t=\frac{x}{v_a}[/tex]
[tex]t=\frac{33.12}{336.175}[/tex]
[tex]t=0.0985\ s[/tex] is the time taken by the two waves to pass each other.