Answer:
30 minutes
Step-by-step explanation:
Let
y ---> the distance in miles
x ---> the time in minutes
Remember that
[tex]1\ h=60\ min[/tex]
[tex]766\frac{2}{3}\ mi=\frac{766*3+2}{3}=\frac{2,300}{3}\ mi[/tex]
we have the ordered pairs
[tex](20,\frac{2,300}{3}),(60,2,300)[/tex]
Find the slope
[tex]m=(2,300-\frac{2,300}{3})/(60-20)[/tex]
[tex]m=(\frac{4,600}{3})/(40)[/tex]
[tex]m=\frac{4,600}{120}\\\\m=\frac{115}{3}\ mi/min[/tex]
Find the linear equation in point slope form
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=\frac{115}{3}[/tex]
[tex]point\ (60,2,300)[/tex]
substitute
[tex]y-2,300=\frac{115}{3}(x-60)[/tex]
[tex]y-2,300=\frac{115}{3}x-2,300\\\\y=\frac{115}{3}x[/tex]
Is a proportional relationship between the variables x and y (speed)
For y=1,150 miles
substitute the value of y in the linear equation and solve for x
[tex]1,150=\frac{115}{3}x\\\\x=1,150(3)/115\\\\x=30\ minutes[/tex]