Respuesta :
Answer:
The speed of the roller coaster at this point is 18.74 m/s.
Explanation:
Given that,
Weight of the student, W = 655 kg
Weight of the roller coaster, [tex]F=1.96\times 10^3\ N[/tex]
Radius of the roller coaster, r = 18 m
At the bottom of the loop, the weight of the roller coaster us given by :
[tex]F=W+\dfrac{mv^2}{r}[/tex]
If m is the mass of the roller coaster,
[tex]W=mg[/tex]
[tex]m=\dfrac{W}{g}[/tex]
[tex]m=\dfrac{655}{9.8}[/tex]
m = 66.83 kg
So,
[tex]F=W+\dfrac{mv^2}{r}[/tex]
[tex]v=\sqrt{\dfrac{(F-W)r}{m}}[/tex]
[tex]v=\sqrt{\dfrac{(1.96\times 10^3-655)\times 18}{66.83}}[/tex]
v = 18.74 m/s
So, the speed of the roller coaster at this point is 18.74 m/s. Hence, this is the required solution.
Answer:
Explanation:
weight, mg = 655 N
m = 655 / 9.8 = 66.84 Kg
N = 1.96 x 10^3 N
radius, r = 18 m
Let v be the speed of roller coaster.
So, the apparent weight
N = mg + mv²/r
1.96 x 1000 = 655 + 66.84 v² / 18
1305 = 3.71 v²
v² = 351.75
v = 18.76 m/s