Respuesta :

Answer:

1) Conditional probability [tex]P(B/A)=0.3[/tex]

2) [tex]P(A and B)=0.28[/tex]

Step-by-step explanation:

1) Given that P(A)=0.7 and P(A and B)=0.21

To find the conditional probability :

Conditional probability [tex]P(B/A)=\frac{P(A and B}{P(A)}[/tex] when P(A)>0

Substitute the values  P(A)=0.7 and P(A and B)=0.21 in above formula we get

[tex]P(B/A)=\frac{0.21}{0.7}

[tex]=0.3[/tex]

Therefore [tex]P(B/A)=0.3[/tex]

Therefore the Conditional probability [tex]P(B/A)=0.3[/tex]

2) Given that P(A)=0.4 and P(B)=0.7 and  also given that Events A and B are independents

To find P(A and B) :

[tex]P(A and B)=P(A)\times P(B)[/tex]

Substitute the values  P(A)=0.4 and P(B)=0.7 in above formula we get

[tex]P(A and B)=(0.4)\times (0.7)[/tex]

=0.28[/tex]

Therefore [tex]P(A and B)=0.28[/tex]