Respuesta :

Answer:

Step-by-step explanation:

Given

curve [tex]f(x)=x^2[/tex]

and [tex]g(x)=x^3[/tex]

Intersection of two curves

[tex]x^3=x^2[/tex]

[tex]x^3-x^2=0[/tex]

[tex]x^2(x-1)=0[/tex]

i.e. at [tex]x=0\ and\ x=1[/tex]

Slope at [tex]=1[/tex]

[tex]f'(x)=2x[/tex]

at [tex]x=1[/tex]

[tex]f'(1)=2[/tex]

[tex]g'(x)=3x^2[/tex]

at [tex]x=1[/tex]

[tex]g'(x)=3[/tex]

[tex]a=<1,2>\ and\ b=<1,3>[/tex]

where a and b are vector with their slope at x=1

a=<1,2> i.e. passes through x=1 and slope =2

angle between them

[tex]\cos \theta =\frac{a\cdot b}{|a||b|}[/tex]

where [tex]\theta [/tex] is the angle between them

[tex]\cos \theta =\frac{1\times 1+2\times 3}{\sqrt{5}\cdot \sqrt{10}}[/tex]

[tex]\cos \theta =\frac{7}{\sqrt{50}}[/tex]

[tex]\theta =cos^{-1}(\frac{7}{\sqrt{50}})[/tex]

[tex]\theta =8.15^{\circ}[/tex]

ACCESS MORE