Answer:
Step-by-step explanation:
Given
curve [tex]f(x)=x^2[/tex]
and [tex]g(x)=x^3[/tex]
Intersection of two curves
[tex]x^3=x^2[/tex]
[tex]x^3-x^2=0[/tex]
[tex]x^2(x-1)=0[/tex]
i.e. at [tex]x=0\ and\ x=1[/tex]
Slope at [tex]=1[/tex]
[tex]f'(x)=2x[/tex]
at [tex]x=1[/tex]
[tex]f'(1)=2[/tex]
[tex]g'(x)=3x^2[/tex]
at [tex]x=1[/tex]
[tex]g'(x)=3[/tex]
[tex]a=<1,2>\ and\ b=<1,3>[/tex]
where a and b are vector with their slope at x=1
a=<1,2> i.e. passes through x=1 and slope =2
angle between them
[tex]\cos \theta =\frac{a\cdot b}{|a||b|}[/tex]
where [tex]\theta [/tex] is the angle between them
[tex]\cos \theta =\frac{1\times 1+2\times 3}{\sqrt{5}\cdot \sqrt{10}}[/tex]
[tex]\cos \theta =\frac{7}{\sqrt{50}}[/tex]
[tex]\theta =cos^{-1}(\frac{7}{\sqrt{50}})[/tex]
[tex]\theta =8.15^{\circ}[/tex]