Respuesta :

Answer:

The equivalent expression to the givan expression is

[tex]\sqrt[4]{324m^{12}}\times\sqrt[3]{64k^9}=12\sqrt[4]{4}m^3k^3[/tex]

Step-by-step explanation:

Given expression is 4th root of 324m^12 * the cubed root of 64k^9

The given expression can be written as

[tex]\sqrt[4]{324m^{12}}\times\sqrt[3]{64k^9}[/tex]

To find the equivalent expression to the given expression :

[tex]\sqrt[4]{324m^{12}}\times\sqrt[3]{64k^9}[/tex]

[tex]=\sqrt[4]{81\times 4m^{12}}\times\sqrt[3]{16\times 4k^9}[/tex]

[tex]=\sqrt[4]{3\times 3\times 3\times 3\times 4m^{12}}\times\sqrt[3]{4\times 4\times 4k^9}[/tex]

[tex]=\sqrt[4]{3\times 3\times 3\times 3\times 4m^{12}}\times\sqrt[3]{4\times 4\times 4k^9}[/tex]

[tex]=(3\times \sqrt[4]{m^{12}})\times (4\times \sqrt[3]{k^9})[/tex]

[tex]=(3\times \sqrt[4]{4m^{12}})\times (4\times \sqrt[3]{k^9})[/tex]

[tex]=(3\times \sqrt[4]{4}\times (m^{12})^{\frac{1}{4}})\times (4\times {(k^9)^{\frac{1}{3}})[/tex]

[tex]=(3\sqrt[4]{4}\times m^{\frac{12}{4}})\times (4\times k^{\frac{9}{3}})[/tex]

[tex]=(3\sqrt[4]{4}\times m^3)\times (4\times k^3)[/tex]

[tex]=3\sqrt[4]{4}m^3.4k^3[/tex]

[tex]=12\sqrt[4]{4}m^3k^3[/tex]

[tex]\sqrt[4]{324m^{12}}\times\sqrt[3]{64k^9}=12\sqrt[4]{4}m^3k^3[/tex]

Therefore the equivalent expression to the given expression is

[tex]\sqrt[4]{324m^{12}}\times\sqrt[3]{64k^9}=12\sqrt[4]{4}m^3k^3[/tex]

ACCESS MORE