Respuesta :
Answer:
Explanation:
Consider the following image(attached)
input Rate=
[tex]10(kg/s) \times 10^9(\mu/kg)\\=10\times10^9\mu g/s\\k=0.2/hr[/tex]
To find the concentration,
Input rate= Output rate + Decay rate ...(1)
[tex]Volume=(100\times 10^3)\times (100\times 10^3)\times (1\times 10^3)\\1000\times 10^{10}m^3[/tex]
Output rate = Area x Velocity x concentration
[tex]=(100\times 10^3(m)\times 1\times 10^3 (m))\times 4(m/s)\timesC(\mu g/m^3)\\=4\times 10^8 C \mu g/s[/tex]
Decay rate = reaction rate x Volume x C
[tex]=\frac{0.2/hr}{3600s/hr}\times 1000\times 10^{10}(m^3)\times C(\mu g/m^3)\\=5.556\times 10^8 \mu g/s[/tex]
Substitute the values in equation(1)
[tex]10\times 10^9(\mu g/s)=4\times 10^8 C(\mu g/s)+5.556\times 10^8 (\mu g/s)\\\\C=\frac{10\times 10^9}{4\times 10^8 +5.556\times 10^8}\\\\=10.46\mu g/m^3[/tex]
If wind speed is suddenly drops to 1m/s concentration of the pollutant two hours later:
Concentration:
Output rate = Area x Velocity x concentration
[tex]=(100\times 10^3(m)\times 1\times 10^3 (m))\times 1(m/s)\timesC(\mu g/m^3)\\=1\times 10^8 C \mu g/s[/tex]
Decay rate=[tex]5.556\times 10^8\mu g/s[/tex]
[tex]10\times 10^9(\mu g/s)=1\times 10^8 C(\mu g/s)+5.556\times 10^8 (\mu g/s)\\\\C=\frac{10\times 10^9}{1\times 10^8 +5.556\times 10^8}\\\\=15.25\mu g/m^3[/tex]
Concentration after two hours
[tex]C(t)=[C_0-C_{2hr}]exp[-(K+Q/V)t]+C_{2hr}\\\\C(2hr)=[10.46-15.25]exp[-(\frac{0.2}{hr}+\frac{1\times 10^8(m^3/s)\times 3600(s/hr)}{1000\times 10^{10}(m^3)})2hr]+15.25\\\\\\[10.446-15.25]\times 0.624 +15.25\\\\12.26\mu g/m^3[/tex]