Answer: 0.8571
Step-by-step explanation:
Poisson distribution formula:
[tex]P(X=x)=\dfrac{e^{-\lambda}\lambda^x}{x!}[/tex] , where x=0,1,2,3... is a poisson variable , [tex]\lambda[/tex] = Mean of the distribution .
Let x be the number of errors in a textbook that follow a Poisson distribution with a mean of 0.02 errors per page.
[tex]\mu=0.02[/tex]
For 100 pages , [tex]\lambda=100\times0.02=2[/tex]
Now , the probability that there are 3 or less errors in 100 pages will be :-
[tex]P(x\leq3)=P(0)+P(1)+P(2)+P(3)\\\\=\dfrac{e^{-2}2^0}{0!}+\dfrac{e^{-2}2^1}{1!}+\dfrac{e^{-2}2^2}{2!}+\dfrac{e^{-2}2^3}{3!}\\\\=e^{-2}(1+2+\dfrac{4}{2}+\dfrac{8}{6})\\\\=(0.13533528)(\dfrac{19}{3})=0.85712344\approx0.8571[/tex]
Hence, the probability that there are 3 or less errors in 100 pages = 0.8571