Respuesta :

Answer:

Option D is correct.

Step-by-step explanation:

We have to simplify the following product as given in the question :

[tex](\sqrt{10x^{4}} - x\sqrt{5x^{2}})(2\sqrt{15x^{4}} + \sqrt{3x^{3} } )[/tex]

= [tex](\sqrt{10x^{4}} - \sqrt{5x^{4}})(\sqrt{60x^{4}} + \sqrt{3x^{3}})[/tex]

{Keeping all the terms within square roots}

= [tex](\sqrt{10x^{4}})(\sqrt{60x^{4}}) + (\sqrt{10x^{4}})(\sqrt{3x^{3}}) - (\sqrt{5x^{4}})(\sqrt{60x^{4}}) - (\sqrt{5x^{4}})(\sqrt{3x^{3}})[/tex]

{By distributive property of multiplication}

= [tex]\sqrt{600x^{8}} + \sqrt{30x^{7}} - \sqrt{300x^{8}} - \sqrt{15x^{7}}[/tex]

= [tex]10x^{4}\sqrt{6} + x^{3}\sqrt{30x} - 10x^{4}\sqrt{3} - x^{3}\sqrt{15x}[/tex]

Therefore, option D is correct. (Answer)

Answer: D on edge

Step-by-step explanation: just took the test

ACCESS MORE