What is the following simplified product? Assume x>/0 (sqrt 10x^4 - x sqrt 5x^2)(2sqrt 15x^4 + sqrt 3x^3 )
![What is the following simplified product Assume xgt0 sqrt 10x4 x sqrt 5x22sqrt 15x4 sqrt 3x3 class=](https://us-static.z-dn.net/files/dd7/593d6c718db2a751970f8d75a48e091f.png)
Answer:
Option D is correct.
Step-by-step explanation:
We have to simplify the following product as given in the question :
[tex](\sqrt{10x^{4}} - x\sqrt{5x^{2}})(2\sqrt{15x^{4}} + \sqrt{3x^{3} } )[/tex]
= [tex](\sqrt{10x^{4}} - \sqrt{5x^{4}})(\sqrt{60x^{4}} + \sqrt{3x^{3}})[/tex]
{Keeping all the terms within square roots}
= [tex](\sqrt{10x^{4}})(\sqrt{60x^{4}}) + (\sqrt{10x^{4}})(\sqrt{3x^{3}}) - (\sqrt{5x^{4}})(\sqrt{60x^{4}}) - (\sqrt{5x^{4}})(\sqrt{3x^{3}})[/tex]
{By distributive property of multiplication}
= [tex]\sqrt{600x^{8}} + \sqrt{30x^{7}} - \sqrt{300x^{8}} - \sqrt{15x^{7}}[/tex]
= [tex]10x^{4}\sqrt{6} + x^{3}\sqrt{30x} - 10x^{4}\sqrt{3} - x^{3}\sqrt{15x}[/tex]
Therefore, option D is correct. (Answer)
Answer: D on edge
Step-by-step explanation: just took the test