Answer:
Explanation:
Given
mass of object is m
Mass of planet is M
radius of planet is R
Total Energy associated with mass m at a height h above planet is Gravitational Potential Energy which is given by
[tex]E_1=-\frac{GMm}{R+h}[/tex]
When it falls on earth with some velocity v
[tex]E_2[/tex]=Kinetic Energy+Potential Energy
[tex]=\frac{1}{2}mv^2+\frac{-GMm}{R}[/tex]
As Energy is conserved therefore
[tex]=E_2[/tex]
[tex]\frac{-GMm}{R+h}=\frac{1}{2}mv^2+\frac{-GMm}{R}[/tex]
[tex]\frac{1}{2}mv^2=\frac{GMmh}{R(R+h)}[/tex]
[tex]v=\sqrt{\frac{2GMh}{R(R+h)}}[/tex]