Respuesta :

Answer:

[tex]8 y^{50}[/tex]

Step-by-step explanation:

Given (64 y Superscript 100 Baseline) Superscript one-half.

Let us write it into an equation.

[tex]\left(64 y^{100}\right)^{\frac{1}{2}}[/tex]

Apply radical rule: [tex]\sqrt[n]{a}=a^{\frac{1}{2}}[/tex] and [tex]a^{m+n}=a^m+a^n[/tex]

[tex]\begin{aligned}\left(64 y^{100}\right)^{\frac{1}{2}} &=\sqrt[2]{64 y^{100}} \\&=\sqrt[2]{8^{2} y^{50} y^{50}} \\&=\sqrt[2]{8^{2}\left(y^{50}\right)^{2}} \\&=8 y^{50}\end{aligned}[/tex]

Hence, [tex]8 y^{50}[/tex] is equivalent to  (64 y Superscript 100 Baseline) Superscript one-half.

Answer:

[tex]8y^{50}[/tex]

Step-by-step explanation:

Ver imagen ineedanswersyeet
ACCESS MORE