Answer:
Explanation:
we have:
[tex]B = 1.55 \times 10^{-8} T\\r = 8.55 km= 8.55 x 10^3m[/tex]
We know:
[tex]B= \frac{\mu_0I}2\pi r}\\\\\therefore I =\frac{2\pi rB}{\mu_0}... (\mu_0 = 4\pi \times 10^{-7} T-m/A)
\\\\= \frac{[2\pi ( 8.55 \times 10^3m)(1.55 \times 10^{-8} T)]}{4\pi \times 10^{-7} T-m/A
}\\\\ =662.625 A[/tex]