Respuesta :
Answer:
[tex] \iiint_V dx\,dy\,dz = \int\limits_{-2}^{2} \int\limits_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int\limits_{\sqrt{8-x^2-y^2}}^{\frac{1}{2}(x^2+y^2) } dx\,dy\,dz[/tex]
Step-by-step explanation:
The common region enclosed above the paraboloid [tex] z = \frac{1}{2} (x^2+y^2)[/tex] and below the sphere [tex]x^2 +y^2+z^2 = 8 [/tex] is the solid.
Let's find the limit bounds for [tex]z[/tex].
The region is bounded above by the sphere [tex]x^2 +y^2+z^2 =8[/tex] .
Isolate [tex]z[/tex] from the equation above.
[tex]x^2 +y^2+z^2 = 8 \iff z^2 = 8 - x^2 +y^2 \implies z = \sqrt{8-x^2-y^2}[/tex]
On the other hand, the region is bounded below by the paraboloid [tex] z = \frac{1}{2} (x^2+y^2)[/tex]
Therefore, we obtain
[tex] \sqrt{8-x^2-y^2} \leq z \leq \frac{1}{2} (x^2+y^2)[/tex]
Now, we need to find the intersection of the sphere and the paraboloid. To do so, we need to solve the following system of equations
[tex] x^2 +y^2+z^2 = 8 [/tex]
[tex] z = \frac{1}{2} (x+y) \implies 2z = x^2 + y^2[/tex].
Substitute the second equation in the first equation. We obtain
[tex] 2z+z^2 = 8 \implies (z-2)(z+4) = 0 \implies z = 2 \quad \vee \quad z = -4 [/tex]
Hence, the paraboloid and the sphere intersect when [tex] z= 2 [/tex].
Substituting [tex]2 [/tex] for [tex] z [/tex] in the equation above gives
[tex] x^2+y^2 = 4 [/tex]
which is a circle with a radius [tex]2 [/tex].
Now, we can find the bond for [tex] x [/tex] and [tex]y[/tex].
For [tex]y[/tex], we obtain
[tex]\sqrt{-4-x^2} \leq y \leq \sqrt{4-x^2}[/tex].
For [tex]x[/tex], we have
[tex]-2 \leq x \leq 2[/tex].
Therefore, the needed triple integral is
[tex] \iiint_V dx\,dy\,dz = \int\limits_{-2}^{2} \int\limits_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int\limits_{\sqrt{8-x^2-y^2}}^{\frac{1}{2}(x^2+y^2) } dx\,dy\,dz [/tex]