Respuesta :
Answer:
Andre has 4 pounds of Broccoli and 6 pounds of Zucchini.
Step-by-step explanation:
In this question there is mistake in given data:
With given data of $117 and 10 pounds of veggies solution is not possible
To make possible solution we should make either data $17 or we should make 100 pounds.
We have solved by making $17.
Given:
Amount of veggies he can carry = 10 pounds
Let the amount of broccoli be 'x'.
Let the amount of Zucchini be 'y'.
Now we can say that;
Amount of veggies he can carry is equal to sum of the amount of broccoli and the amount of Zucchini.
framing in equation form we get;
[tex]x+y=10 \ \ \ \ equation \ 1[/tex]
Also Given:
Total money he has = $17
Per pound of Zucchini costs = $1.50
Per pound of broccoli cost = $2
Now we can say that;
Total money he has is equal to sum of the amount of broccoli multiplied by Per pound of broccoli cost and the amount of Zucchini multiplied by Per pound of Zucchini costs.
framing in equation form we get;
[tex]2x+1.5y =17 \ \ \ \ equation \ 2[/tex]
Now Multiplying equation 1 by 1.5 we get;
[tex]1.5(x+y)=10\times1.5\\\\1.5x+1.5y =15 \ \ \ \ equation \ 3[/tex]
Subtracting equation 3 from equation 2 we get;
[tex]2x+1.5y-(1.5x+1.5y)=17-15\\\\2x+1.5y-1.5x-1.5y=2\\\\0.5x=2[/tex]
Dividing both side by 0.5 we get;
[tex]\frac{0.5x}{0.5}=\frac{2}{0.5}\\\\x=4\ pounds[/tex]
Now substituting the value of 'x' in equation 1 we get;
[tex]x+y=10\\\\4+y=10\\\\y=10-4 = 6\ pounds[/tex]
Hence Andre has 4 pounds of Broccoli and 6 pounds of Zucchini.
The proportion of broccoli and zucchini is an illustration of linear functions
He would carry 4 pounds of broccoli, and 6 pounds of zucchini
Represent broccoli with c, and zucchini with z.
So, we have the following system of equations
- [tex]c + z = 10[/tex] -- the total pounds of veggies he has carry
- [tex]2c + 1.5z = 17[/tex] -- the total cost of the veggie
Make c the subject in [tex]c + z = 10[/tex]
[tex]c = 10 - z[/tex]
Substitute 10 - z for c in [tex]2c + 1.5z = 17[/tex]
[tex]2(10 -z) + 1.5z = 17[/tex]
Open bracket
[tex]20 -2z + 1.5z = 17[/tex]
Collect like terms
[tex]-2z + 1.5z = 17-20[/tex]
Evaluate like terms
[tex]-0.5z = -3[/tex]
Divide both sides by -0.5
[tex]z =6[/tex]
Substitute 6 for z in [tex]c = 10 - z[/tex]
[tex]c = 10 - 6[/tex]
[tex]c = 4[/tex]
Hence, he would carry 4 pounds of broccoli, and 6 pounds of zucchini
Read more about linear functions at:
https://brainly.com/question/15602982