HELP! ANDM WORK! Answer the following questions about the problem above. Write in complete sentences to get full credit.

1. What is the slope for section "d" of Mrs. Washington's commute.


2. What does it mean that the slope is negative in context of the problem?


3. Why are the slopes different over different intervals?


4. How long does it take Mrs. Washington to get home? How did you know this?

HELP ANDM WORK Answer the following questions about the problem above Write in complete sentences to get full credit1 What is the slope for section d of Mrs Was class=

Respuesta :

Step-by-step explanation:

Part 1) What is the slope for section "d" of Mrs. Washington's commute

As the slope for section "d" of Mrs. Washington's commute can be computed by the following formula:

[tex]\frac{y_{2} - y_{1}}{x_{2} - x_{1}}[/tex]

⇒ [tex]\frac{6 - 0}{32 - 20}=\frac{1}{2}[/tex]

Therefore, the slope for section "d" of Mrs. Washington's commute [tex]\frac{1}{2}=0.5[/tex]

Part 2) What does it mean that the slope is negative in context of the problem?

  • The slope is negative in context of the problem means the slope is moving downward from the left.
  • In negative slop, the value of x gets increased, while the vale of y gets decreased while in case of positive slop, the value of both x and y get increased.

Part 3) Why are the slopes different over different intervals?

  • Slopes are different at different intervals. The reason is that the distance covered in time taken for each part of the given journey are different.
  • Also, the speed is different for each interval depending upon the time taken to cover the distance.

Distance-time equation is needed to compute the speed

[tex]Speed\:=\:\frac{distance}{time}\:[/tex]

Let distance be denoted as d, and time be denoted as t

  • d = [tex]y_{2} -y_{1}[/tex]

[tex]d=20 - 15 = 5[/tex]

  • t = [tex]x_{2} -x_{1}[/tex]

t= 8 - 0 = 8

As

  • [tex]Speed\:=\:\frac{distance}{time}\:=\frac{d}{t}[/tex]

[tex]Speed = \frac{5}{8}[/tex]

[tex]Speed = 0.625[/tex]

Hence, the speed in the part 1 would be [tex]0.625[/tex] [tex]ms^{-1}[/tex]

Part 4) How long does it take Mrs. Washington to get home? How did you know this?

  • After carefully observing the graph, it sounds clear that Mrs. Washington takes 32 minutes to reach home.
  • It can be easily figured out from the graph that it represents the total time taken throughput the complete journey.

Keywords: speed, time , distance covered

Learn more about slope, distance from brainly.com/question/12614399

#learnwithBrainly

ACCESS MORE