Respuesta :
Answer:
[tex]p=45.9\ kg.m/s[/tex]
[tex]v_f=0.85\ m/s[/tex]
[tex]\Delta K=-370.75 \ Joule[/tex]
Explanation:
Linear Momentum
An object of mass m traveling at a speed v in a linear path has a momentum of
[tex]p=m.v[/tex]
It this object collides with another object and no external forces are acting on the system, then the total momentum is conserved, thus, being p the initial momentum
[tex]p=m_1v_1+m_2v_2[/tex]
and p' the final momentum
[tex]p'=m_1v_1'+m_2v_2'[/tex]
They must be equal, thus
[tex]m_1v_1'+m_2v_2'=m_1v_1+m_2v_2[/tex]
Part A. The total momentum is now computed:
We have that [tex]m_1=2.70 kg, m_2=51 kg, v_1=17 m/s, v_2=0.[/tex]
[tex]p=(2.7)(17)+51(0)=45.9\ kg.m/s[/tex]
[tex]\boxed{p=45.9\ kg.m/s}[/tex]
Part B.
Both blocks collide and stick together in an unique block of mass m_1+m_2:
[tex](m_1+m_2)v'=m_1v_1+m_2v_2[/tex]
v' is the common speed of the blocks after the collision. We now solve for v'
[tex]\displaystyle v'=\frac{m_1v_1+m_2v_2}{m_1+m_2}[/tex]
[tex]\displaystyle v'=\frac{(2.7)(17)+0}{2.7+51}[/tex]
[tex]\boxed{v'=0.85\ m/s}[/tex]
Part C:
The total kinetic energy before the collision is
[tex]\displaystyle K=\frac{m_1v_1^2}{2}+\frac{m_2v_2^2}{2}[/tex]
[tex]\displaystyle K=\frac{(2.7)(17)^2}{2}+\frac{(51)0^2}{2}[/tex]
[tex]K=390.15\ Joule[/tex]
The total kinetic energy after the collision is
[tex]\displaystyle K'=\frac{m_1v_1'^2}{2}+\frac{m_2v_2'^2}{2}[/tex]
[tex]\displaystyle K'=\frac{(m_1+m_2)v'^2}{2}[/tex]
[tex]\displaystyle K'=\frac{(2.7+51)(0.85)^2}{2}[/tex]
[tex]K'=19.4\ Joule[/tex]
There is a change of
[tex]\boxed{\Delta K=19.4-390.15=-370.75 \ Joule}[/tex]