corrected question:
A rectangle and a square have the same perimeter. One side-length of the rectangle is 25% longer than the other. What is the ratio between the areas of the rectangle and the square?
Answer:
ratio of area of recatngle to square= 0.9879
Step-by-step explanation:
perimeter of rectangle = 2(L+B)
perimeter of a square =[tex]4L_(s)[/tex]
L=B+0.25B
L=1.25B
[tex]4L_(s)[/tex]= 2(L+B)
[tex]4L_(s)[/tex]= 2(1.25B+B)
[tex]4L_(s)[/tex]= 2(2.25B)
[tex]4L_(s)[/tex]= 4.5B
B= 4/4.5 [tex]L_(s)[/tex]
B= 0.889 [tex]L_(s)[/tex] ..........equ1
area of square =[tex]L_(s)^{2}[/tex]
area of rectangle = L*B
=1.25B*B=[tex]1.25B^{2}[/tex]
ratio of area of recatngle to square =[tex]\frac{1.25B^{2} }{L_{s} ^{2}}[/tex]
referring to equ 1
ratio of area of recatngle to square = [tex]\frac{1.25* (0.889L_{s}) ^{2} }{L_{s} ^{2}}[/tex]
=[tex]\frac{ 0.9879L_{s} ^{2} }{L_{s} ^{2}}[/tex]
ratio of area of recatngle to square= 0.9879