Respuesta :
Answer:
Mass of larger cart will be 0.0213 m /sec
Explanation:
We have given mass of small cart [tex]m_1=150gram=0.150kg[/tex]
Initial velocity of small cart [tex]v_{1i}=1.6m/sec[/tex]
Mass of larger block [tex]m_2=5kg[/tex]
Initial velocity of larger cart [tex]v_{2i}=0m/sec[/tex]
After the collision velocity of smaller cart [tex]v_{1f}=-0.890m/sec[/tex]
Now according conservation of momentum
[tex]m_1v_{1i}+m_2v_{2i}=m_1v{1f}+m_2v_{2f}[/tex]
[tex]0.150\times 1.6+5\times 0=0.150\times -0.890+5\times v_{2f}[/tex]
[tex]5\times v_{2f}=0.1065[/tex]
[tex]v_{2f}=0.0213m/sec[/tex]
The speed of the large cart after the collision is 0.0231m/s
To get the speed of the large cart, we will use the law of conservation of momentum expressed as:
[tex]m_1u_1+m_2u_2 = (m_1v_1+m_2v_2[/tex]
[tex]m_1[/tex] and [tex]m_2[/tex] are the masses of the object
[tex]u_1[/tex] and [tex]u_2[/tex] are the velocities of the object
[tex]v_1 \ and \ v_2[/tex] are the final velocity of the objects
Given the following parameters
[tex]m_1[/tex] = 150g = 0.15kg
[tex]m_2[/tex] = 5.00kg
[tex]u_1 =1.60m/s\\u_2=0m/s (at \ rest )\\v_1 = 0.890m/s[/tex]
Substitute the given parameters into the formula to have:
[tex]0.15(1.60)+5(0) = 0.15(0.890) + 5v_2\\0.24=0.1335 + 5v_2\\5v_2=0.24-0.1335\\5v_2=0.1065\\v_2=0.1065/5\\v_2=0.0213m/s[/tex]
Hence the speed of the large cart after the collision is 0.0231m/s
Learn more here: https://brainly.com/question/17608504