Respuesta :
Answer:
x = 6
Step-by-step explanation:
We are here given a logarithmic equation and we need to solve out and find out the value of x . The given equation is ,
[tex]\sf\longrightarrow log \ x + log 3 = log 18 [/tex]
Assuming the base of the log to be 10 ,
[tex]\sf\longrightarrow log_{10} x + log_{10} 3 = log_{10} 18 [/tex]
We know a property of log as , [tex] \sf log_a m + log_a n = log_a(mn) [/tex] . Using this we have ,
[tex]\sf\longrightarrow log_{10} ( 3 x ) = log_{10} 18 [/tex]
On comparing ,
[tex]\sf\longrightarrow 3x = 18[/tex]
Divide both sides by 3 ,
[tex]\sf\longrightarrow x =\dfrac{18}{3}[/tex]
Simplify ,
[tex]\sf\longrightarrow\boxed{\blue{\sf x = 6 }} [/tex]