Respuesta :
Answer:
[tex]The\ two\ lines\ intersect\ at\ (4,7).[/tex]
Step-by-step explanation:
Slope[tex](m)[/tex] of line passing through [tex](x_1,y_1)\ and\ (x_2,y_2)[/tex] is given by [tex]\frac{y_2-y_1}{x_2-x_1}[/tex].
Slope intercept form of line is given by: [tex]y=mx+b[/tex]
First Line:
Let first line is [tex]y=m_1x+b_1[/tex]
[tex]m_1=\frac{8-4}{5-1}=\frac{4}{4}=1\\\\Line:\ y=x+b_1\\\\It\ passes\ through\ (1,4)\\\\4=1+b_1\Rightarrow\ b_1=3\\\\First\ line\ y=x+3[/tex]
Second Line:
Let second line is [tex]y=m_2x+b_2[/tex]
[tex]m_2=\frac{4-10}{6-2}=\frac{-6}{4}=-\frac{3}{2}\\\\Line:\ y=-\frac{3}{2}x+b_2\\\\It\ passes\ through\ (2,10)\\\\10=-3+b_2\Rightarrow\ b_2=13\\\\Second\ line\ y=-\frac{3}{2}x+13[/tex]
Point of Intersection of Two Lines:
[tex]Solve\\\\y=x+3\\\\y=-\frac{3}{2}x+13\\\\\\x+3=-\frac{3}{2}x+13\\\\x+\frac{3}{2}=13-3\\\\\frac{5}{2}x=10\\\\x=\frac{2}{5}\times 10\\\\x=4\\\\Since\ y=x+3\\\\y=4+3=7\\\\Point\ of\ intersection\ is\ (4,7)[/tex]
Answer:
4, 7
Step-by-step explanation:
This if you want the answer right away if you want an explanation look at the answer above it's correct I got my question right.