Respuesta :
Answer:
Explanation:
Given
Frequency of SHM is [tex]f=2.07\ Hz[/tex]
Amplitude of SHM is [tex]A=3.13\ cm[/tex]
Cup begins to slip when it overcomes the friction force
Friction force [tex]F_s=\mu mg[/tex]
Applied force [tex]F=ma[/tex]
[tex]ma=\mu mg[/tex]
[tex]a=\mu g[/tex]
and maximum acceleration during SHM is
[tex]a=A\omega ^2[/tex]
[tex]a=A(2\pi f)^2[/tex]
[tex]a=3.13\times 10^{-2}\times (2\pi 2.07)^2[/tex]
[tex]a=5.296\ m/s^2[/tex]
[tex]\mu =\frac{a}{g}[/tex]
[tex]\mu =\frac{5.296}{9.8}=0.54[/tex]
Answer:
The coefficient of static friction between the tray and the cup is 0.53.
Explanation:
Given that,
Frequency f= 2.07 Hz
Amplitude x= 3.13 cm
We need to calculate the acceleration
Using formula of acceleration
[tex]a=\omega^2\times x[/tex]
[tex]a=(2\pi\times f)^2\times x[/tex]
Put the value into the formula
[tex]a=(2\pi\times2.07)^2\times3.13\times10^{-2}[/tex]
[tex]a=5.29\ m/s^2[/tex]
We need to calculate the coefficient of static friction between the tray and the cup
Using formula of normal force
[tex]F = ma[/tex]
For slipping just start,
Using frictional force
[tex]F=F_{f}[/tex]
[tex]ma=\mu mg[/tex]
[tex]a=\mu g[/tex]
[tex]\mu=\dfrac{a}{g}[/tex]
Put the value into the formula
[tex]\mu=\dfrac{5.29}{9.8}[/tex]
[tex]\mu=0.53[/tex]
Hence, The coefficient of static friction between the tray and the cup is 0.53.