Answer:
a) L = 33.369 m , b) 21
Explanation:
The analysis of the ocean depth can be performed assuming that at the bottom of the ocean there is a node and the surface must have a belly, so the expression for resonance is
λ = 4 L / n
n = 1, 3, 5, ...
The speed of the wave is
v = λ f
v = 4L / n f
L = n v / 4f
Let's write the expression for the two frequencies
L = n₁ 343/4 53.95
L = n₁ 1,589
L = n₂ 343/4 59
L = n₂ 1.4539
Let's solve the two equations
n₁ 1,589 = n₂ 1,459
n₁ / n₂ = 1.4539 / 1.589
n₁ / n2 = 0.91498
Since the two frequencies are very close the whole numbers must be of consecutive resonances, let's test what values give this value
n₁ n₂ n₁ / n₂
1 3 0.3
3 5 0.6
5 7 0.7
7 9 0.77
9 11 0.8
17 19 0.89
19 21 0.905
21 23 0.913
23 25 0.92
Therefore the relation of the nodes is n₁ = 21 and n₂ = 23
Let's calculate
L = n₁ 1,589
L = 21 1,589
L = 33.369 m
b) the number of node and nodes is equal therefore there are 21 antinode