Respuesta :
Answer:
The graph has a domain of all real numbers.
The graph has a y-intercept at [tex](0,1)[/tex].
The graph has an x-intercept at [tex](-7,0)[/tex].
Step-by-step explanation:
Given: The graph is [tex]y=\sqrt[3]{x-1}+2[/tex]
The domain of a function is a set of input values for which the function is real and defined.
Thus, the graph has a domain of [tex](-\infty, \infty)[/tex].
To find the y-intercept: To find the y-intercept, substitute [tex]x=0[/tex] in [tex]y=\sqrt[3]{x-1}+2[/tex].
[tex]\begin{aligned}y &=\sqrt[3]{x-1}+2 \\&=\sqrt[3]{0-1}+2 \\&=-1+2 \\&=1\end{aligned}[/tex]
Thus, the y-intercept is [tex](0,1)[/tex]
To find the x-intercept: To find the x-intercept, substitute [tex]y=0[/tex] in [tex]y=\sqrt[3]{x-1}+2[/tex] .
[tex]\begin{aligned}y &=\sqrt[3]{x-1}+2 \\0 &=\sqrt[3]{x-1}+2 \\-2 &=\sqrt[3]{x-1} \\(-2)^{3} &=(\sqrt[3]{x-1})^{3} \\-8 &=x-1 \\-7 &=x\end{aligned}[/tex]
Thus, the x-intercept is [tex](-7,0)[/tex]