Answer:
[tex]\dfrac{\mu_A}{\mu_G}=0.197[/tex]
Explanation:
given,
Speed of a wave on violin A = 288 m/s
Speed on the G string = 128 m/s
Force at the end of string G = 110 N
Force at the end of string A = 350 N
the ratio of mass per unit length of the strings (A/G). = ?
speed for string A
[tex]v_A = \sqrt{\dfrac{F_A}{\mu_A}}[/tex].......(1)
speed for string G
[tex]v_G = \sqrt{\dfrac{F_G}{\mu_G}}[/tex]........(2)
Assuming force is same in both the string
now,
dividing equation (2)/(1)
[tex]\dfrac{v_G}{v_A}=\dfrac{\sqrt{\dfrac{F_G}{\mu_G}}}{\sqrt{\dfrac{F_A}{\mu_A}}}[/tex]
[tex]\dfrac{v_G}{v_A}=\dfrac{\sqrt{\mu_A}}{\sqrt{\mu_G}}[/tex]
[tex]\dfrac{128}{288}=\dfrac{\sqrt{\mu_A}}{\sqrt{\mu_G}}[/tex]
[tex]\dfrac{\mu_A}{\mu_G}=0.197[/tex]