The speed of a wave on a violin A string is 288 m/s and on the G string is 128 m/s. The force exerted on the ends of the string G is 110N, on the ends of the string A is 350N.

Use this information to determine the ratio of mass per unit length of the strings (A/G).

Respuesta :

Answer:

[tex]\dfrac{\mu_A}{\mu_G}=0.197[/tex]

Explanation:

given,

Speed of a wave on violin A = 288 m/s

Speed on the G string = 128 m/s

Force at the end of string G  = 110 N

Force at the end of string A = 350 N

the ratio of mass per unit length of the strings (A/G). = ?

speed for string A

 [tex]v_A = \sqrt{\dfrac{F_A}{\mu_A}}[/tex].......(1)

speed for string G

 [tex]v_G = \sqrt{\dfrac{F_G}{\mu_G}}[/tex]........(2)

Assuming force is same in both the string

now,

dividing equation (2)/(1)

[tex]\dfrac{v_G}{v_A}=\dfrac{\sqrt{\dfrac{F_G}{\mu_G}}}{\sqrt{\dfrac{F_A}{\mu_A}}}[/tex]

[tex]\dfrac{v_G}{v_A}=\dfrac{\sqrt{\mu_A}}{\sqrt{\mu_G}}[/tex]

[tex]\dfrac{128}{288}=\dfrac{\sqrt{\mu_A}}{\sqrt{\mu_G}}[/tex]

[tex]\dfrac{\mu_A}{\mu_G}=0.197[/tex]

ACCESS MORE