Respuesta :

Answer:

[tex]\frac{-7-2\sqrt{10}}{3}[/tex]

Step-by-step explanation:

we have

[tex]\frac{\sqrt{2}+\sqrt{5}}{\sqrt{2}-\sqrt{5}}[/tex]

Simplify

Multiply the expression by  [tex]\frac{\sqrt{2}+\sqrt{5}}{\sqrt{2}+\sqrt{5}}[/tex]

[tex](\frac{\sqrt{2}+\sqrt{5}}{\sqrt{2}-\sqrt{5}})(\frac{\sqrt{2}+\sqrt{5}}{\sqrt{2}+\sqrt{5}})[/tex]

Apply difference of squares in the denominator

[tex]\frac{(\sqrt{2}+\sqrt{5})^2}{(\sqrt{2})^2-(\sqrt{5})^2}[/tex]

[tex]\frac{2+2\sqrt{10}+5}{2-5}[/tex]

[tex]\frac{7+2\sqrt{10}}{-3}[/tex]

[tex]\frac{-7-2\sqrt{10}}{3}[/tex]

ACCESS MORE