33
Simplify the function f(x) =
(81) 4. Then determine the key aspects of the function.
The initial value is
The simplified base is
The domain is
The range is

Respuesta :

Answer:

Please check the answer below in detail.

Step-by-step explanation:

The correct form of the function is

[tex]f(x)=\frac{1}{3}(81)^{\frac{3x}{4}[/tex]

Lets simplify

[tex]f(x)=\frac{1}{3}\cdot \:81^{\frac{3x}{4}}[/tex]

[tex]f(x)=\frac{1}{3}\cdot \:(3^{4}) ^{\frac{3x}{4}}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}[/tex]

[tex]\left(3^4\right)^{\frac{3x}{4}}=3^{4\cdot \frac{3x}{4}}=3^{3x}[/tex]

So, the function f(x) becomes

[tex]f(x)=\frac{1}{3}\cdot \:3^{3x}[/tex]

Use the exponent rule [tex]\frac{a^m}{a^n}=a^{m-n}[/tex]

The simplified form of the given function would be:

[tex]f(x)=3^{3x-1}[/tex]

As domain is considered to be the set of all possible input values of x for which the function is defined.

So,

[tex]\mathrm{Domain\:of\:}\:\frac{1}{3}\cdot \:27^x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

As range is the set of dependent variable for which the function is defined.

As

[tex]\mathrm{The\:range\:of\:an\:exponential\:function\:of\:the\:form}\:c\cdot \:n^{ax+b}+k\:\mathrm{is}\:\:f\left(x\right)>k[/tex]

[tex]k=0[/tex]

[tex]f\left(x\right)>0[/tex]

Therefore,

[tex]\mathrm{Range\:of\:}\frac{1}{3}\cdot \:27^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}[/tex]

Graph is also attached from where you can observe all the key aspects which have been discussed above.

Keywords: domain, range, function, graph

Learn more about domain, range, function and graph from brainly.com/question/13882944

#learnwithBrainly

Ver imagen SaniShahbaz
ACCESS MORE