Respuesta :
Answer:
Please check the answer below in detail.
Step-by-step explanation:
The correct form of the function is
[tex]f(x)=\frac{1}{3}(81)^{\frac{3x}{4}[/tex]
Lets simplify
[tex]f(x)=\frac{1}{3}\cdot \:81^{\frac{3x}{4}}[/tex]
[tex]f(x)=\frac{1}{3}\cdot \:(3^{4}) ^{\frac{3x}{4}}[/tex]
[tex]\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}[/tex]
[tex]\left(3^4\right)^{\frac{3x}{4}}=3^{4\cdot \frac{3x}{4}}=3^{3x}[/tex]
So, the function f(x) becomes
[tex]f(x)=\frac{1}{3}\cdot \:3^{3x}[/tex]
Use the exponent rule [tex]\frac{a^m}{a^n}=a^{m-n}[/tex]
The simplified form of the given function would be:
[tex]f(x)=3^{3x-1}[/tex]
As domain is considered to be the set of all possible input values of x for which the function is defined.
So,
[tex]\mathrm{Domain\:of\:}\:\frac{1}{3}\cdot \:27^x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]
As range is the set of dependent variable for which the function is defined.
As
[tex]\mathrm{The\:range\:of\:an\:exponential\:function\:of\:the\:form}\:c\cdot \:n^{ax+b}+k\:\mathrm{is}\:\:f\left(x\right)>k[/tex]
[tex]k=0[/tex]
[tex]f\left(x\right)>0[/tex]
Therefore,
[tex]\mathrm{Range\:of\:}\frac{1}{3}\cdot \:27^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}[/tex]
Graph is also attached from where you can observe all the key aspects which have been discussed above.
Keywords: domain, range, function, graph
Learn more about domain, range, function and graph from brainly.com/question/13882944
#learnwithBrainly
![Ver imagen SaniShahbaz](https://us-static.z-dn.net/files/d13/535184fc1ef36358476f58ef59042613.png)